Algorithms for Large, Sparse Network Alignment

Mohsen Bayati, David Gleich, Margot Gerritsen, Amin Saberi, Ying Wang @ Stanford University

and

Jeong Han Kim @ Yonsei University

Our motivation

Library of Congress subject headings

Desserts

URI: http://id.loc.gov/authorities/sh85037243#concept

Type: Topical Term

Broader Terms:

Confectionery

Narrower Terms:

- Ambient desserts
- Banana splits
- Charlottes (Desserts)
- Chocolate desserts
- Frozen desserts
- Ice cream cones
- Mousses
- Puddings
- Refrigerated desserts
- Sundaes
- Whipped toppings

LC Classification: TX773

Created: 1986-02-11

Last Modified: 1988-01-15 17:36:44

Wikipedia categories

Wikipedia categories

Wikipedia categories

Category: Desserts

From Wikipedia, the free encyclopedia

The main article for this category is dessert.

Desserts are sweet foods eaten purely for pleasure, typically at the end of a meal.

Subcategories

This category has the following 16 subcategories, out of 16 total.

```
C cont.
                                                    Р
[+] Desserts by country (20) = [+] Cookies (1)
                                               [+] Pastry (4)
                            [+] Custard desserts (0) = [+] Pies (9)
B
                                                     [+] Puddings (2)
= [+] Brand name desserts (3) D
                            [+] Dessert sauces (0)
C
                            [+] Doughnuts (1)
                                                     [+] Sweet breads (2)
[+] Cakes (0)
[+] Chocolate desserts (0)
[+] Confectionery (9)
                            [+] Frozen desserts (2)
[+] Dessert stubs (1)
                            [+] Ice cream (5)
```

Wikipedia vs Library of Congress

Library of Congress

Developed by few, experts, in a centralized way in over a century.

Are they similar?

Wikipedia vs Library of Congress

How similar these two data-sets are?

Can we use one data-set to enrich the other?

 How to spend tax-payer's money more wisely to maintain the Library of Congress?

Project funded by the Library of Congress.

Are these graphs similar

Network alignment for Comparing data-sets

 Match cross species vertices (proteins) and edges (protein interactions) → Detect functionally similar proteins.

Network alignment for Comparing data-sets

- Find the largest common sub-graph on similar vertices. (Singh-Xu-Berger'07,'08).
- Recently (Klau'09).

Berger et al'08, PNAS.

Network alignment for Comparing data-sets

- Database schema matching
 - (Melnik-Garcia Molina-Rahm'02).
- Computer vision: Match a query image to an existing image.
 - (Conte-Foggia'04)
- Ontology matching: Match query image to existing image.
 - (Svab'07).
- Website: Match similar parts of the web-graph.
 - Toyota's USA websites vs Toyota France.
- Social networks: Teenagers have both fake and real identities.
- This talk: Comparing Wikipedia vs Library of Congress.

This talk

- Defining the problem mathematically
- Quick survey of existing approaches
- A message-passing algorithm.
- Experiments
 - Real data
 - Synthetic data
- Rigorous results.

Approach: Align the two databases

205,948 nodes 422,503 links

5,233,829 potential matches

<u>Goal:</u> Find an <u>alignment</u> that <u>matches similar titles</u> and <u>maximizes</u> the total number of <u>overlaps</u>.

Quadratic program formulation

Formulate the problem as a quadratic program (QP).

Maximizing the similarity alone is easy, but the overlap is NP-hard to maximize. There is a reduction from the MAX-CUT problem.

NP-hard to obtain better than 87.8% of the optimum overlap, unless the unique games conjecture is false (Goeman's-Williamson'95).

Quadratic program formulation

maximize
$$\alpha \sum_{ii'} x_{ii'} w_{ii'} + \beta x^T S x$$

$$\mathbf{A}\vec{x} \leq \mathbf{1}$$

$$x_{ii'} \in \{0,1\}$$

Related NP-hard problems:

- 1) Maximum common sub-graph.
- 2) Graph isomorphism.
- 3) Maximum clique.

Quadratic program formulation

maximize
$$\alpha \sum_{ii'} x_{ii'} w_{ii'} + \beta x^T S x$$

Subject to: $\mathbf{A}\vec{x} \prec \mathbf{1}$

$$x_{ii'} \in [0,1]$$

Relaxing the integer constraint→ Still hard (non-concave max.)

Heuristic 1) Find a local maxima using <u>SNOPT</u> → Round to an integer solution.

Naïve linear program (LP) formulation

maximize
$$\alpha \sum_{ii'} x_{ii'} w_{ii'} + \beta \sum_{(ii'jj') \in \mathcal{O}} y_{ii',jj'}$$
 Subject to: $\mathbf{A}\vec{x} \preceq \mathbf{1}$
$$x_{ii'} \in [0,1]$$

For sparse graphs can be solved relatively efficiently.

 $y_{ii',jj'} \le x_{ii'}, \ y_{ii',jj'} \le x_{jj'}$

Improved LP by Klau'09

$$\begin{aligned} & \text{maximize} & & \alpha \sum_{ii'} x_{ii'} w_{ii'} + \beta \sum_{(ii'jj') \in \mathcal{O}} y_{ii',jj'} \\ & & + \sum_{(ii'jj') \in \mathcal{O}} u_{ii',jj'} \bigg(y_{ii',jj'} - y_{jj',ii'} \bigg) \end{aligned}$$

Subject to:

$$egin{aligned} \mathbf{A} ec{x} & \leq 1 \ & x_{ii'} \in [0,1] \ & y_{ii',jj'} \leq x_{ii'} \ , \ y_{ii',jj'} \leq x_{jj'} \end{aligned}$$

+ some other combinatorial constraints

Both LPs and QP also produce an upper-bound for the optimum.

IsoRank (Berger et al'07, 08)

maximize
$$\alpha \sum_{ii'} x_{ii'} r_{ii'} + \beta \sum_{(ii'jj') \in \mathcal{O}} x_{ii'} x_{jj'}$$
 Subject to: $\mathbf{A}\vec{x} \preceq \mathbf{1}$
$$x_{ii'} \in [0,1]$$

$$r_{ii'} = \sum_{j \in \partial_i} \sum_{j' \in \partial_i'} \frac{r_{ii'}}{|\partial_i||\partial_i'|}$$

The new weights, r_{ii} ts can be found using an eigen-value calculation (similar to PageRank).

Our approach: Belief Propagation (BP)

Decoding of LDPC codes R. Gallager'63

Cavity method in Statistical Physics
M. Mezard and G. Parisi'86

Artificial Intelligence
J. Pearl'88

Successful applications in: Bayesian Inference, Computer vision, Coding theory, Optimization, Constraint satisfaction, Systems biology, etc.

Our approach: Belief Propagation (BP)

Independently, BP was used by Bradde-Braunstein-Mahmoudi-Tira-Weigt-Zecchina'09 for similar problems.

Our approach: Belief Propagation (BP)

$$p(\bar{x}_{E_L}, \bar{x}_S) \propto e^{\alpha \bar{w}^T \bar{x}_{E_L} + \frac{\beta}{2} I^T \bar{x}_S} \prod_{i=1}^n f_i(\bar{x}_{\partial f_i}) \times \prod_{i'=1}^m g_{i'}(\bar{x}_{\partial g_{i'}}) \prod_{ii'jj' \in V_S} h_{ii'jj'}(\bar{x}_{\partial h_{ii'jj'}}).$$

Belief Propagation for $\beta=0$

1) Iterate the following:

For $k=0,1,\ldots$ update the following messages on each link of the network.

 $m_{i \rightarrow i'}^k = w_{ii'} - \max_{j' \neq i'} \left((m_{j' \rightarrow i}^{k-1})^+ \right).$

2) The estimated solution at the end of iteration k choose a matching π^k

$$\pi^k(i) = \arg\max_{1 \le j \le n} \left(m_{j' \to i'}^k \right).$$

i.e. pick the link with maximum incoming message.

Belief Propagation for $\beta > 0$

Variable nodes

How much *i* likes to mach to *i* '

f_1 f_2 f_2 f_2 f_3 $g_{1'}$ $g_{2'}$ $g_{3'}$ $g_{3'}$ $g_{3'}$

Function nodes

$$m_{ii' \to f_i}^{(t)} = \alpha w_{ii'} - \left(\max_{k \neq i} \left[m_{ki' \to g_{i'}}^{(t-1)} \right] \right)^+ + \sum_{ii'jj' \in O} \min \left(\frac{\beta}{2}, \max(0, \frac{\beta}{2} + m_{jj' \to h_{ii'jj'}}^{(t-1)}) \right).$$

$$m_{ii' \to h_{ii'jj'}}^{(t)} = \alpha w_{ii'} - \left(\max_{k \neq i} \left[m_{ki' \to g_{i'}}^{(t-1)} \right] \right)^+ - \left(\max_{k' \neq i'} \left[m_{ik' \to f_i}^{(t-1)} \right] \right)^+ + \sum_{\substack{kk' \neq jj' \\ ii'kk' \in O}} \min \left(\frac{\beta}{2}, \max(0, m_{kk' \to h_{ii'kk'}}^{(t-1)} + \frac{\beta}{2}) \right)^+ + \sum_{\substack{kk' \neq jj' \\ ii'kk' \in O}} \min \left(\frac{\beta}{2}, \max(0, m_{kk' \to h_{ii'kk'}}^{(t-1)} + \frac{\beta}{2}) \right)^+ + \sum_{\substack{kk' \neq jj' \\ ii'kk' \in O}} \min \left(\frac{\beta}{2}, \max(0, m_{kk' \to h_{ii'kk'}}^{(t-1)} + \frac{\beta}{2}) \right)^+$$

How much ii' likes to have overlap with jj'

Algorithm works for $\beta=0$

(B-Shah-Sharma'05) Each node's decision is correct for $k \geq \lceil \frac{2n \max_{ii'} |w_{ii'}|}{\epsilon} \rceil$

(B-Borgs-Chayes-Zecchina'07): Same algorithm works for any graph when LP relaxation of the problem is integral.

- Generalizes to b-matchings. (independently by Sanghavi-Malioutov-Wilskey'07).
- Works for asynchronous updates as well.

(B-Borgs-Chayes-Zecchina'08): "Belief Propagation" solves the LP relaxation.

- Can use Belief Propagation messages to find the LP solutions in all cases.

How about the $\beta > 0$?

Experiment on Synthetic data

Most of the real-world networks including Wikipedia and LCSH have power-law distribution (The node degree distribution satisfies $P(d_i = k) = \frac{1}{k\theta}$.)

Experiment on Synthetic data

BP, IsoRank → few seconds
SNOPT → few hours

Power-law graph experiments

Grid graphs experiments

Bioinformatics data: Fly vs Yeast

Bioinformatics data: Human vs Mouse

Ontology data: Wiki vs LCSH

Statistical significance

maximize
$$\alpha \sum_{ii'} x_{ii'} w_{ii'} + \beta x^T S x$$

Subject to: $\mathbf{A}\vec{x} \preceq 1$

$$x_{ii'} \in \{0, 1\}$$

Create many uniform random samples of LCSH and Wiki with the same node degrees. The objective value drops by 99%.

Statistical evidence that the two data-sets are very comparable.

Some matched titles

LCSH WC
Science fiction television series Science fiction television programs
Turing test Turing test
Maching learning Machine learning
Hot tubs Hot dog

Enriching the data-sets

 The approach suggests few thousands of potential links to be tested with human experts in the Library of Congress.

Conclusions

- Only BP, IsoRank and LP can handle large graphs.
- BP and LP find near optimum solution on sparse data
- LP produces an upper bound, and slightly better results.
 But slightly slower.
- For denser graphs BP outperforms LP.

Thank You!